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Abstract. A strate gyfor Eigenstructure Assignment base don Linear Quadratic De-

sign and Parallel Multiobjective Genetic Algorithm is pr esented in this paper. The main

contribution of this work is to pr esent the development of the strategy to guide a GA-

optimizer base don Pareto optimality, niche induction method, pr ogressive articulation of

preferences and the utilization of two di�erent �tness functions.The �nal design result is a

state feedback controller that pr ovides therequired Eigenstructure and whose performance

is veri�ed using an aircraft state spac emodel.

keywords: Optimal control, multiobjective optimization, evolutionary computation, in-

telligent control, de cisionmaking units.

1. INTRODUCTION

Eigenstructure Assignment (EA)plays an important role in control systemsengineer-

ing, because of its importance on systems response(D'Azzo and Houpis, 1995). EA meth-

ods hav e been developed and employ ed to set up aircrafts 
ight controls (Clark and

Davies, 1997), to adjust controller gains of chemical plants (Liu and P atton,1996), etc.

However, when the linear quadratic regulator (LQR) design is applied the great challenge

is to �nd out Q and R weighting matrices that lead to the speci�ed requirements. A

strategy based on multiobjective optimization, genetic algorithm and parallel computa-

tion, which together constitute a parallel multiobjective genetic algorithm (PMOGA), was

developed to ov ercomethese di�culties.



A state feedback controller is the �nal design result whose performance is veri�ed on

an aircraft state space model.

The strategy works as follows. Initially, the multiobjective genetic algorithm (MOGA)

based on Pareto optimality, niche induction method and progressive articulation of pref-

erences (Fonseca and Fleming, 1998a) and (Fonseca and Fleming, 1998b), searchs for Q

and R matrices that are used to calculate the controllers gains, which are provided by the

Algebraic Riccati Equation (ARE) solution. After, the loop is closed and the feedback

system eigenstructure is calculated. Finally, the �tness functions are used to evaluate

whether the current EA matches the required eigenstructure.

The whole search process continues on a parallel way in the sense that several EA

trials happens in several processors of a workstations network and the best solutions are

exchanged during the search to improve the solutions (individuals) and to limit the search

space in sectors for each processor near the process end. Two �tness functions are involved

in the search , one based on the inequalities method (Zakian and Al-Naib, 1973) and the

other directly based on the required EA.

2. PROBLEM SOLUTION FRAMEWORK

The Eigenstructure Assignment problem is formulated as an optimization problem. The

entire optimization process has the main purpose of �nding state feedback controllers that

match the eigenvalues range and eigenvectors speci�cations.

The optimization method developed is based on the linear quadratic regulator (LQR)

design, that gives state feedback controllers, and on a genetic algorithm (GA) optimizer,

that searches for the required weighting Q and R matrices.

This section is divided in two parts. The �rst one shows the LQR design method

formulated directly in terms of an multiobjective optimization problem. The second one

presents the GA-optimizer features that were developed to perform an intelligent search

on the solution space. Details of the problem formulation and GA-optimizer can be seen

in (Bottura and Fonseca Neto, 1999a)

2.1. EA-LQR Formulation

Considering a state variable model of a controllable linear invariant system:

_x = Ax +Bu (1)

y = Cx

where x is the state vector (n�1), u is the control vector (m�1) and y is the output

vector (r � 1), the control vector is given by :

u = �K(Q;R)x (2)

where K is the gain matrix (m � n), Q is the positive semi-de�nite state weighting

matrix, R is the positive semi-de�nite control weighting matrix.

The controller gain matrix K is obtained by the solution of the algebraic Riccati

equation for the linear quadratic optimization problem. The control law is found by the

minimization of the quadratic performance cost subject to a restriction _x = Ax +Bu.



The closed-loop system is obtained by substitution of the linear quadratic control law

(2) in (1):

_x = (A�BK(Q;R))x (3)

The EA problem is solved if the eigenstructure of closed-loop system (1) matches

the design speci�cations. Then, the eigenstructure assignment problem can be posed as

the determination of the K(Q;R) gain matrix that satis�es the system's performance

requirements.

From the above discussions, the optimization problem formulation is stated by gath-

ering the linear quadratic solution and the eigenstructure restrictions:

min
Q;R

nX

i=1

si(Q;R) (4)

s.t.

si(Q;R) � 1 i = 1; :::; n (5)

�ei � �ci(Q;R) � �di i = 1; :::; n (6)

where �ei and �di are the left and the right i-ths eigenvalues bounds, respectively, for

the i-th desired eigenvalue �ci. si is the i-th normalized eigenvalue sensitivity si(Q;R) =

(
kLi(Q;R)k2kRi(Q;R)k2
<Li(Q;R)Ri(Q;R)>

)=�i; �i and the i-th design speci�cation. kLi(Q;R)k2 and kRi(Q;R)k2

are the 2-norm of the left and right eigenvectors, respectively, and < Li(Q;R)Ri(Q;R) >

is the eigenvectors dot product.

2.2. GA-optimizer

The GA-optimizer is a biased stochastic search engine. Its main purpose is to �nd Q

and R matrices that satis�es the design requirements. The GA-optimizer starting points

are the matrices Q and R set (population). This set is randomly determined and it is

evolved by the optimizer during the search cycle.

GA-optimizers were specially developed by (Bottura and Fonseca Neto, 1999a) and

(Bottura and Fonseca Neto, 1999b) to handle the EA problem when it is formulated as

proposed here based on the LQR design and on the inequalities method (Zakian and

Al-Naib, 1973). In this subsection a brief description of this optimizer main features is

given.

This GA-optimizer basic elements are the genetic operations and its �tness function

structure. The genetic operations are the manners that the optimizer evolves the matrices

set of initial solutions into better directions. The �tness function structure encompass

ARE solutions, the controllers matrices gains, closed-loop systems eigenstructure and

evaluation of the eigenstructure goodness.

The Q and R matrices are modeled as single chromosomes. The elements of these

matrices are represented as alleles. Operations between alleles Q and R are not allowed

in this implementation.

The genetic operations implemented were crossover, mutation and reproduction. The

crossover (x-over) operation combines alleles from di�erent solutions (QR-individuals), the



result is two o�springs (two solutions) and this combination degree varies according to the

population age. The mutation operation is a modi�cation in the QR-individuals' alleles.

The reproduction operation is the duplication of some good QR-individuals. Besides

those three operations a new operation was implemented to untrack populations from

saturation's levels or two allow a better exploration of the search space; this operation is

called guest and it is the insertion of randomly generated individuals into the population.

3. THE PARALLEL MOGA ALGORITHM

The GA-optimizer and a decision making unit (DMU) are the basic elements in this

multiobjective genetic algorithm (MOGA) approach. The optimizer is in charge of QR-

individuals search and the DMU is a logical unit that is designed to guide the optimizer

into better searches. References (Bottura and Fonseca Neto, 1999b) and (Bottura and

Fonseca Neto, 1999c) give details of the MOGA and DMU algorithm features. This

section presents the parallel MOGA de�nitions and its algorithm basic steps.

The MOGA engine is formalized as a GA-optimizer and DMU pair to perform se-

quential explorations of the search space. The MOGA is de�ned as:

MOGA = (GA� optimizer;DMU) (7)

A parallel MOGA, called PMOGA, is a search engine that comprises a MOGA set to

perform parallel solutions explorations in a distributed environment. The parallelMOGA

is de�ned as:

PMOGA = (MOGA0;MOGA1;MOGA2; : : : ;MOGAn) (8)

where MOGA0 is the MOGA coordinator and the MOGAi, i = 1; : : : ; n are MOGAs

coordinateds.

The algorithm basic steps can be described as follows:

1. The MOGA0 generates randomly an initial population of QR-individual and makes

its evaluation according to some �tness function structure.

2. The MOGA0 distributes this initial population among the MOGAi, i = 1; : : : ; n.

3. MOGAi, i = 0; : : : ; n start the search space exploration with his GA� optimizeri,

i = 0 guided by its DMUi, i = 0.

4. When the search cycle reaches its stopping criteria, The permanent population

(solution set) from MOGAi, i = 1; : : : ; n is sent to the MOGA0.

5. After receiving the MOGAi, i = 1; : : : ; n, solution set, the MOGA0 selects the best

QR-individuals and performs a new operation to �nd a better solution set and to

increase the �nal population pro�le.

4. The DMU strategy

This section presents strategies based on niche induction methods, Pareto optimal-

ity and progressive articulation of preferences. The decision making unit is the logical



locus that incorporates the intelligent part of the MOGA algorithm. In a recent work

(Bottura and Fonseca Neto, 1999c) developed a knowledge based procedure for a DMU

that is randomly triggered by rules. This DMU is based on the schema theory and multi-

armed bandit paradigm, (Koza, 1992), (Goldberg, 1989) and (Holland, 1975), and designer

knowledge of the problem.

The concept of Pareto optimality is used to guarantee that the next feasible solution

will be as good as the last feasible solution, i.e., a new solution is considered as the best

solution if all new restrictions are smaller than the correspondent old ones.

The concept of progressive articulation of preference is used to guide the search in

�nding the QR-individuals that �rst satisfy the hardest restriction and when it is found

the DMU authorizes the GA-optimizer to �nd a solution that satis�es the second hardest

restriction and the process goes on that way.

The niching induction method developed in this work is present in subsection 4.1.. In

this proposed method, the individuals whose correspondents alleles are in a well de�ned

range and produce a well de�ned range of �tness function values are candidates to be part

of a natural niche and a mating restriction criterion is used to guide the induced niche

exploration.

4.1. Niching induction method

The search space S is divided in Sk search spaces . One of them is explored by the

initial population and the others k � 1 are explored by initial population individual plus

an uniform increment. The frontier line are all QR-individual where 100% of their alleles

belong to the incremented initial population.

Considering the search space S as the set of all QR-individuals whose alleles are in a

speci�ed range, the entire search space is de�ned as:

S = fQR� individual j 0:001 � QRallelei � 1; i = 1; : : : ; m2n2g (9)

where m is the number of Q alleles and n is the number of R alleles.

The entire search space can be represented as the union of all Sk spaces:

S = fS1 [ S2 [ S3 [ : : : Skg (10)

where each Sk space, based on 9, is formalized as:

Sl = fQR� individual +�l j 0:001 � QRallelei � Xinitial +�kl; (11)

i = 1; : : : ; m2n2; l = 1; : : : kg

Once established the Sk frontiers, the GA-optimizer starts the search cycle. Before,

the optimizer starts each search, the DMU is monitoring for individuals that possesses

similar characteristics and that have their �tness function values inside of a de�ned range.

When the DMU detects this feature, a niche is found and the next step is this niche

exploration.

The niche exploration is done by the GA-optimizer and the DMU guides this explo-

ration using mating restriction that guarantees the niche population diversi�cation, in



the sense that x-over operations are not allowed between niche's individual that are too

close.

5. RESULTS

The performace of the PMOGA algorithm implementation was studied on a distributed

computational environment. The PMOGA implementation searchs for feedback con-

trollers that makes the desired eigenstructure assignment. A state space model of a

Lockheed aircraft, L1011 Tristar type, linearized to cruise condition, is used as a test

system for the proposed DMU strategies and its A, B and C matrices, sensitivities re-

strictions and eigenvalues ranges can be found in (Davis and Clarke, 1995) and (Sobel

and Shapiro, 1985).

The performance analysis is made considering a search performed by theGA-optimizer

without DMU strategies actions and when these actions are ready to be activated. The

behaviours of the populations for the best individuals, during each step of the search cy-

cle, are presented in Figures (1) and (2). The Figure (1a) shows that the DMU strategies

really helped the optimizer in �nding the feasible solution, while the optimizer without

DMU provided some improvements in the beginning of the search cycle, but when it

reached near population 70 the optimizer tracked and remained at the tracked point un-

til the task ended. It can be seen, Figure (1a), that the optimizer without these DMU

strategies could not satisfy the EA requirements. The Ek plot, Figure (1b), shows that

the Pareto's set did occur only until population 50, because searches for Pareto's sets is

not the DMU highest priority.
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FIGURE 1: Populations � behaviour of the best individual - a) Individual maximum sensi-

tivity Si and b) Cost funcion EK

The progressive articulation of preferences is applied to satisfy constraints related

with eigenvalues sensitivities sk
2
and sk

6
. As the sensitivity sk

6
for most of the cases is

harder to reach its feasibility than sensitivity sk
2
, based on the designer knowledge sk

6
has

higher priority than sk
2
. Figure (2) shows that those two are the hardest ones, while the

others (sk
1
, sk

3
, sk

4
and sk

5
) have well de�ned behaviours and the application of articulation



of preferences is not of great importance for them.

0 100 200
0.2

0.3

0.4

0.5

0.6

0.7
Task − Master 

 Population 

s 1(K
)

0 100 200
0.2

0.4

0.6

0.8

1

1.2
Task − Master 

 Population 

s 3(K
)

0 100 200
0.36

0.38

0.4

0.42

0.44

0.46
Task − Master 

 Population 

s 3(K
)

0 100 200
0.4

0.6

0.8

1

1.2

1.4
Task − Master 

 Population 

s 4(K
)

0 100 200
0.4

0.6

0.8

1

1.2

1.4
Task − Master 

 Population 

s 5(K
)

0 100 200
0.5

1

1.5

2
Task − Master 

 Population 

s 6(K
)

� - DMU

� - DMU� - DMU

� - DMU

� - DMU

� - DMU

�� - no-DMU

�� - no-DMU�� - no-DMU

�� - no-DMU

�� - no-DMU

�� - no-DMU

FIGURE 2: Populations � behaviour of the sensitivities ski

Comparing the �nal populations pro�les, Figure (3), it can be seen that the one

evolved by DMU strategies has presented a better pro�le, in an overall manner, than the

ones evolved by the canonical GA-optimizer, but both optimizers have produced good

improvements when compared with the initial population. The eigenvalues maximum

sensitivity smax
i , Figure (3a), shows that most of the individuals that come from the

DMU strategies present a better pro�le than the ones that come from no-DMU strategies.

The cost function Ek average is lower for the population evolved by the optimizer with

implementedDMU strategies.
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The state feedback controller e�ciency, Table (1), is observed when it is implemented

into the aircraft linearized model and its performance is studied for the impulse signal.

Figure (4a) presents the system impulse response for the basic controller that was obtained

in reference (Davis and Clarke, 1995); the system impulse response for the controller

obtained by the GA-optimizer with the DMU is presented in Figure (4b). As can be seen

the controller designed with the proposed technic presented a very good performance and

has the ability to perform the required eigenstructure assignment. The system eigenvalues

are inside the required range and the respective eigenvectors satisfy the sensitivity limits.

TABLE 1: Master Controller gains

Task Gains

Master DMU 0.238 0.003 -0.017 -1.042 -0.023 1.355

0.007 0.183 -0.914 -1.047 -1.864 3.620

0 10 20 30 40
−0.8

−0.6

−0.4

−0.2

0

0.2

a) Basic  controller

 Time 

 S
ta

te
 V

ar
ia

bl
es

0 10 20 30 40
−0.8

−0.6

−0.4

−0.2

0

0.2

b) Task  Master  controller

 Time 

 S
ta

te
 V

ar
ia

bl
es

X4 �X4 �

X3 � �X3 � �

X5 �:X5 �:

X6 :X6 :

FIGURE 4: System impulse response - a) Basic controller b) Master controller with DMU

actions

In spite of the slave controller presenting a better performance than the best controller

obtained from the GA-optimizer withoutDMU strategies, it did not satisfy the EA require-

ments. The design last step is a sequential processing where the individuals of the initial

population are the best controllers obtained from the master and slave tasks; this task

tryes to minimize the cost function
Pn

i=1
f�i(�ei��ci)

�(�ei��ci)+(~vei�~vci)
�Fvi(~vei�~vci),

where �ei i-th speci�ed eigenvalue, �ci i-th desired eigenvalue, fi i-th eigenvalue weighting,

~vei i-th speci�ed eigenvector, ~vci i-th desired eigenvector, Fvi i-th eigenvector weighting

diagonal matrix. Aiming to get better controllers and/or to improve the controllers popu-

lation pro�le. The sequential task could not get a better controller than the one obtained



by the parallel LQR designs, but improved the population pro�le. Two reasons can justify

these events occurrence; �rst: the initial population was not a good starting point and

second: the eigenvalues limits were so tight that it is very hard to �nd a controller that

satis�es both the eigenvectors restrictions and the eigenvalues speci�ed ranges.

6. CONCLUDING REMARKS

The parallel multiobjective genetic algorithm (PMOGA) comprised by a set of GA-

optimizer and DMU pairs working together on a ordinary distributed computational

environment has shown to be a valuable controller design tool to perform searches for

matrices Q and R of the LQR design that satis�es a required eigenstructure.

An advantage of the proposed technic is the small amount of time spent to �nd the

state feedback controller that satis�es the required EA; approximately 1.53 minutes for

the worst case on a simple distributed environment with two tasks (a master and a slave)

searching for two controller families. Another advantage is that the proposed technic

incorporates the qualities of linear quadratic design (LQR). A disadvantage is the choice

of a bad initial population (starting solution points) that can make the search very hard or

even unable to �nd a feasible solution. The next paragraph proposes alternative solutions

for this disadvantageous situation.

The �rst proposal is: DMU actions improvement by increasing the number of indi-

viduals in the permanent population; if this population is increased the number of niches

can be enlarged, as well as the number of individuals that belong to a given niche, al-

lowing a better PMOGA exploration of the search space, where the starting point is the

same controllers family. The second proposal is to �nd a better starting point with the

following features: the controllers eigenvalues are on the speci�ed ranges or the hardest

sensitivity restrictions are very close to their satisfaction.
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